C*-algebras of separated graphs

Pere Ara

Universitat Autònoma de Barcelona

Shanghai, April 2012

P. Ara, K. R. Goodearl, *C*-algebras of separated graphs*, J. Funct. Anal. **261** (2011), 2540–2568.

P. Ara, Purely infinite simple reduced graph C*-algebras of one-relator graphs, arXiv:1203.2815v1 [math.OA].

Some motivation: the C^* -algebras $U_{m,n}^{\text{nc}}$

Larry Brown (1981) studied the C^* -algebra $U_n^{\rm nc}$. Concretely the algebra $U_n^{\rm nc}$ was defined as the universal algebra generated by elements u_{ij} , $1 \le i, j \le n$, subject to the relations making (u_{ij}) a unitary $n \times n$ matrix.

Some motivation: the C^* -algebras $U_{m,n}^{\text{nc}}$

Larry Brown (1981) studied the C^* -algebra $U_n^{\rm nc}$. Concretely the algebra $U_n^{\rm nc}$ was defined as the universal algebra generated by elements u_{ij} , $1 \le i, j \le n$, subject to the relations making (u_{ij}) a unitary $n \times n$ matrix.

The algebra $U_n^{\rm nc}$ was later studied by McClanahan, who also studied the rectangular case $U_{m,n}^{\rm nc}$.

Some motivation: the C^* -algebras $U_{m,n}^{\text{nc}}$

Larry Brown (1981) studied the C^* -algebra $U_n^{\rm nc}$. Concretely the algebra $U_n^{\rm nc}$ was defined as the universal algebra generated by elements u_{ij} , $1 \le i, j \le n$, subject to the relations making (u_{ij}) a unitary $n \times n$ matrix.

The algebra $U_n^{\rm nc}$ was later studied by McClanahan, who also studied the rectangular case $U_{m,n}^{\rm nc}$.

McClanahan raised the problem of computing the K-theory of $U_{m,n}^{\rm nc}$, establishing a conjecture and proving it in several cases.

Definition

A directed graph is given by $E = (E^0, E^1, s, r)$, where E^0 and E^1 denote the sets of vertices and edges of E, respectively, and $s, r : E^1 \to E^0$ are the source and range maps.

Definition

A directed graph is given by $E = (E^0, E^1, s, r)$, where E^0 and E^1 denote the sets of vertices and edges of E, respectively, and $s, r : E^1 \to E^0$ are the source and range maps.

Definition

A path in E is $\alpha = e_1 e_2 \cdots e_n$ where $e_i \in E^1$ and $r(e_i) = s(e_{i+1})$ for i < n. The *length* of such a path is $|\alpha| := n$. Paths of length 0 are identified with the vertices of E.

Separated graphs

Definition

A separated graph is a pair (E, C) where E is a graph, $C = \bigsqcup_{v \in E^0} C_v$, and C_v is a partition of $s^{-1}(v)$ (into pairwise disjoint nonempty subsets) for every vertex v:

$$s^{-1}(v) = \bigsqcup_{X \in C_v} X.$$

(In case v is a sink, we take C_v to be the empty family of subsets of $s^{-1}(v)$.)

The constructions we introduce revert to existing ones in case $C_v = \{s^{-1}(v)\}$ for each $v \in E^0$. We refer to a *non-separated graph* in that situation.

Definition

For any separated graph (E,C), the full graph C*-algebra of the separated graph (E,C) is the universal C*-algebra with generators $\{v,e\mid v\in E^0,\ e\in E^1\}$, subject to the following relations:

(V)
$$vw = \delta_{v,w}v$$
 and $v = v^*$ for all $v, w \in E^0$,

(E)
$$s(e)e=er(e)=e$$
 for all $e\in E^1$,

(SCK1)
$$e^*f = \delta_{e,f}r(e)$$
 for all $e, f \in X$, $X \in C$, and

(SCK2)
$$v = \sum_{e \in X} ee^*$$
 for every finite set $X \in C_v$, $v \in E^0$.

Definition

For any separated graph (E,C), the full graph C*-algebra of the separated graph (E,C) is the universal C*-algebra with generators $\{v,e\mid v\in E^0,\ e\in E^1\}$, subject to the following relations:

(V)
$$vw = \delta_{v,w}v$$
 and $v = v^*$ for all $v, w \in E^0$,

(E)
$$s(e)e = er(e) = e$$
 for all $e \in E^1$,

(SCK1)
$$e^*f = \delta_{e,f}r(e)$$
 for all $e, f \in X$, $X \in C$, and

(SCK2)
$$v = \sum_{e \in X} ee^*$$
 for every finite set $X \in C_v$, $v \in E^0$.

In case (E, C) is trivially separated, $C^*(E, C)$ is just the classical graph C^* -algebra $C^*(E)$.

Assume that (E, C) is a separated graph and that $|E^0| = 1$. Then we have

$$C^*(E,C) \cong *_{X \in C} \mathcal{O}_{|X|},$$

that is, $C^*(E, C)$ is a free product over $\mathbb C$ of Cuntz algebras of type (1, |X|), for $X \in C$.

Assume that (E, C) is a separated graph and that $|E^0| = 1$. Then we have

$$C^*(E,C) \cong *_{X \in C} \mathcal{O}_{|X|},$$

that is, $C^*(E, C)$ is a free product over $\mathbb C$ of Cuntz algebras of type (1, |X|), for $X \in C$.

Note that if |X| = 1 for all $X \in C$ then

$$C^*(E,C)\cong C^*(\mathbb{F}_r),$$

a full group C*-algebra of the free group \mathbb{F}_r on $r=|E^1|$ generators.

Let $1 \le m \le n$. Let us consider the separated graph (E(m,n),C(m,n)), where E(m,n) is the graph consisting of two vertices v,w and with

$$E(m,n)^{1} = \{\alpha_{1},\ldots,\alpha_{n},\beta_{1},\ldots,\beta_{m}\},\$$

with $s(\alpha_i) = s(\beta_j) = v$ and $r(\alpha_i) = r(\beta_j) = w$ for all i, j, and C(m, n) consists of two elements $X = \{\alpha_1, \dots, \alpha_n\}$ and $Y = \{\beta_1, \dots, \beta_m\}$.

Let $1 \le m \le n$. Let us consider the separated graph (E(m,n),C(m,n)), where E(m,n) is the graph consisting of two vertices v, w and with

$$E(m,n)^{1} = \{\alpha_{1},\ldots,\alpha_{n},\beta_{1},\ldots,\beta_{m}\},\$$

with $s(\alpha_i) = s(\beta_j) = v$ and $r(\alpha_i) = r(\beta_j) = w$ for all i, j, and C(m, n) consists of two elements $X = \{\alpha_1, \dots, \alpha_n\}$ and $Y = \{\beta_1, \dots, \beta_m\}$.

Write

$$A_{m,n} := C^*(E(m,n), C(m,n)).$$

Figure: The separated graph (E(2,3), C(2,3))

Lemma

There is a natural isomorphism

$$\gamma \colon U_{m,n}^{\mathrm{nc}} \to w A_{m,n} w$$

given by

$$\gamma(X_{ji}) = \beta_j^* \alpha_i, \quad \gamma(X_{ji}^*) = \alpha_i^* \beta_j$$

Note that

$$\gamma(\sum_{i=1}^{n} X_{ji} X_{ki}^*) = \sum_{i=1}^{n} \beta_j^* \alpha_i \alpha_i^* \beta_k = \beta_j^* \beta_k = \delta_{jk} w$$

and similarly $\gamma(\sum_{j=1}^{m} X_{ji}^* X_{jk}) = \delta_{ik} w$ so γ is a well-defined homomorphism, which is shown to be an isomorphism.

Since $v \sim n \cdot w \sim m \cdot w$, we get from the above

$$A_{m,n} \cong M_{n+1}(wA_{m,n}w) \cong M_{n+1}(U_{m,n}^{\mathrm{nc}}) \cong M_{m+1}(U_{m,n}^{\mathrm{nc}}).$$

Amalgamated free products

We will consider only *finitely separated graphs*, that is $|X| < \infty$ for all $X \in C$.

Amalgamated free products

We will consider only *finitely separated graphs*, that is $|X| < \infty$ for all $X \in C$.

Given $\iota \colon A_0 \to A_\iota$, $\iota \in I$, the **amalgamated free product** $A = *_{A_0} A_\iota$ is a C^* -algebra A, together with $\rho_\iota \colon A_\iota \to A$ such that

$$\rho_{\iota} \circ \iota = \rho_{\iota'} \circ \iota' \colon A_0 \to A$$

for all ι, ι' , and such that given any other *-homomorphisms $\delta_\iota \colon A_\iota \to B$ with $\delta_\iota \circ \iota = \delta_{\iota'} \circ \iota'$ for all ι, ι' there is a unique $\delta \colon A \to B$ such that $\delta \circ \rho_\iota = \delta_\iota$.

Let (E, C) be finitely separated graph. Consider $A_0 = C_0(E^0)$, $A_X = C^*(E_X)$, where $(E_X)^0 = E^0$, $(E_X)^1 = X$.

Let (E,C) be finitely separated graph. Consider $A_0=C_0(E^0)$, $A_X=C^*(E_X)$, where $(E_X)^0=E^0$, $(E_X)^1=X$. We have $\iota\colon A_0\to A_X$ and also $\rho_X\colon A_X\to C^*(E,C)$, and of course $\rho_\iota\circ\iota\colon A_0\to C^*(E,C)$ is the natural map. Let (E,C) be finitely separated graph. Consider $A_0=C_0(E^0)$, $A_X=C^*(E_X)$, where $(E_X)^0=E^0$, $(E_X)^1=X$. We have $\iota\colon A_0\to A_X$ and also $\rho_X\colon A_X\to C^*(E,C)$, and of course $\rho_\iota\circ\iota\colon A_0\to C^*(E,C)$ is the natural map.

We have:

$$C^*(E,C) \cong *_{A_0}A_X,$$

the amalgamated free product of A_X over A_0 .

Definition

Let $B \subseteq A$ be an inclusion of C^* -algebras. A **conditional expectation** is a map $\Phi \colon A \to B$ such that

- **3** Φ is positive: $\Phi(x) \ge 0$ if $x \ge 0$.

The conditional expectation $\Phi \colon A \to B$ is *faithful* if, for $x \ge 0$, $\Phi(x) = 0$ implies x = 0.

A canonical conditional expectation $\Phi \colon C^*(E) \to C_0(E^0)$ can be defined, satisfying:

$$\Phi(\gamma e f^* \nu^*) = 0, \qquad e \neq f,$$

$$\Phi(\gamma e e^* \nu^*) = \frac{1}{|s^{-1}(s(e))|} \Phi(\gamma \nu^*).$$

A canonical conditional expectation $\Phi \colon C^*(E) \to C_0(E^0)$ can be defined, satisfying:

$$\Phi(\gamma e f^* \nu^*) = 0, \qquad e \neq f,$$

$$\Phi(\gamma e e^* \nu^*) = \frac{1}{|s^{-1}(s(e))|} \Phi(\gamma \nu^*).$$

Theorem

Let E be a row-finite directed graph. Then the canonical conditional expectation $\Phi: C^*(E) \to C_0(E^0)$ is faithful.

Voiculescu's reduced amalgamated free product:

Given $\{(A_{\iota}, \Phi_{\iota}), \ \iota \in I\}$, unital C^* -algebras, $A_0 \subseteq A_{\iota}$, with conditional expectations $\Phi_{\iota} : A_{\iota} \to A_0$, the *reduced amalgamated* free product (A, Φ) is uniquely determined by:

- **1** A is a unital C^* -algebra and \exists unital *-homomorphisms $\sigma_{\iota} \colon A_{\iota} \to A \text{ s.t. } (\sigma_{\iota})_{|A_0} = (\sigma_{\iota'})_{|A_0} \text{ for all } \iota, \iota' \in I.$
- **2** A is generated by $\bigcup_{\iota \in I} \sigma_{\iota}(A_{\iota})$.
- **1** $\Phi: A \to A_0$ is a conditional expectation such that $\Phi \circ \sigma_{\iota} = \Phi_{\iota}$ for all $\iota \in I$.
- For $(\iota_1, \ldots, \iota_n) \in \Lambda(I)$ and $a_j \in \ker \Phi_{\iota_j}$ we have $\Phi(\sigma_{\iota_1}(a_1) \cdots \sigma_{\iota_n}(a_n)) = 0$. Here, $\Lambda(I)$ denotes the family of indices $(\iota_1, \ldots, \iota_n)$, $n \geq 1$, such that $\iota_i \neq \iota_{i+1}$ for $i = 1, \ldots, n-1$.
- If $c \in A$ is such that $\Phi(a^*c^*ca) = 0$ for all $a \in A$ then c = 0.

It is known that $\Phi \colon A \to A_0$ is faithful in case all the conditional expectations $\Phi_\iota \colon A_\iota \to A_0$ are faithful.

It is known that $\Phi\colon A\to A_0$ is faithful in case all the conditional expectations $\Phi_\iota\colon A_\iota\to A_0$ are faithful.

Definition

Let (E,C) be a finitely separated graph. Assume that $|E^0|$ is finite. Then we can define the *reduced graph* C^* -algebra $C^*_{\rm red}(E,C)$ as the reduced amalgamated free product of the (A_X,Φ_X) .

It is known that $\Phi\colon A\to A_0$ is faithful in case all the conditional expectations $\Phi_\iota\colon A_\iota\to A_0$ are faithful.

Definition

Let (E,C) be a finitely separated graph. Assume that $|E^0|$ is finite. Then we can define the *reduced graph* C^* -algebra $C^*_{\rm red}(E,C)$ as the reduced amalgamated free product of the (A_X,Φ_X) .

Note that $C^*_{\rm red}(E,C)$ comes with a faithful conditional expectation $\Phi\colon C^*_{\rm red}(E,C) \to A_0 = C_0(E^0)$.

It is known that $\Phi\colon A\to A_0$ is faithful in case all the conditional expectations $\Phi_\iota\colon A_\iota\to A_0$ are faithful.

Definition

Let (E,C) be a finitely separated graph. Assume that $|E^0|$ is finite. Then we can define the *reduced graph* C^* -algebra $C^*_{\rm red}(E,C)$ as the reduced amalgamated free product of the (A_X,Φ_X) .

Note that $C^*_{\mathrm{red}}(E,C)$ comes with a faithful conditional expectation $\Phi\colon C^*_{\mathrm{red}}(E,C) \to A_0 = C_0(E^0)$.

Remark

There is also a definition of $C^*_{red}(E,C)$ in case $|E^0|=\infty$.

Theorem

If E is a (non-separated) row-finite graph then the canonical map $C^*(E) \to C^*_{\mathrm{red}}(E)$ is an isomorphism.

Observe first that in case $|E^0|=1$, we get the free product result $C^*(E,C)\cong *_{X\in C}\mathcal{O}_{|X|}$.

Observe first that in case $|E^0|=1$, we get the free product result $C^*(E,C)\cong *_{X\in C}\mathcal{O}_{|X|}$.

For (E(m,n),C(m,n)), $A_X\cong M_{n+1}(\mathbb{C}),$ $A_Y\cong M_{m+1}(\mathbb{C})$, and

Observe first that in case $|E^0|=1$, we get the free product result $C^*(E,C)\cong *_{X\in C}\mathcal{O}_{|X|}$.

For
$$(E(m,n),C(m,n))$$
, $A_X\cong M_{n+1}(\mathbb C)$, $A_Y\cong M_{m+1}(\mathbb C)$, and
$$C^*(E(m,n),C(m,n))\cong M_{n+1}(\mathbb C)*_{\mathbb C^2}M_{m+1}(\mathbb C),$$

where $\mathbb{C}^2 \to M_{n+1}$ is given by sending (1,0) to $e_{11} + \cdots + e_{nn}$ and (0,1) to $e_{n+1,n+1}$, and similarly for $\mathbb{C}^2 \to M_{m+1}$.

Observe first that in case $|E^0|=1$, we get the free product result $C^*(E,C)\cong *_{X\in C}\mathcal{O}_{|X|}$.

For
$$(E(m,n),C(m,n)),\ A_X\cong M_{n+1}(\mathbb{C}),\ A_Y\cong M_{m+1}(\mathbb{C})$$
 , and

$$C^*(E(m,n),C(m,n))\cong M_{n+1}(\mathbb{C})*_{\mathbb{C}^2}M_{m+1}(\mathbb{C}),$$

where $\mathbb{C}^2 \to M_{n+1}$ is given by sending (1,0) to $e_{11} + \cdots + e_{nn}$ and (0,1) to $e_{n+1,n+1}$, and similarly for $\mathbb{C}^2 \to M_{m+1}$. Combining this with the isomorphism

$$M_{n+1}(U_{m,n}^{\mathrm{nc}})\cong C^*(E(m,n),C(m,n))$$

we get

$$M_{n+1}(U_{m,n}^{\mathrm{nc}}) \cong M_{n+1}(\mathbb{C}) *_{\mathbb{C}^2} M_{m+1}(\mathbb{C}).$$

The canonical conditional expectations Φ_X and Φ_Y are easily seen to correspond to the maps $\phi \colon M_{n+1}(\mathbb{C}) \to \mathbb{C}^2$ and $\psi \colon M_{m+1}(\mathbb{C}) \to \mathbb{C}^2$ given by

$$\phi([a_{ij}]) = (\frac{1}{n} \sum_{i=1}^{n} a_{ii}, a_{n+1,n+1}),$$

$$\psi([b_{ij}]) = (\frac{1}{m} \sum_{j=1}^{m} b_{jj}, b_{m+1,m+1}).$$

The canonical conditional expectations Φ_X and Φ_Y are easily seen to correspond to the maps $\phi \colon M_{n+1}(\mathbb{C}) \to \mathbb{C}^2$ and $\psi \colon M_{m+1}(\mathbb{C}) \to \mathbb{C}^2$ given by

$$\phi([a_{ij}]) = (\frac{1}{n} \sum_{i=1}^{n} a_{ii}, a_{n+1,n+1}),$$

$$\psi([b_{ij}]) = (\frac{1}{m} \sum_{j=1}^{m} b_{jj}, b_{m+1,m+1}).$$

The C^* -algebra $C^*_{\text{red}}(E(m, n), C(m, n))$ is simple, but the C^* -algebra $C^*(E(m, n), C(m, n))$ is far from being simple.

nuclearity/exactness

• The graph C^* -algebra $C^*(E)$ is nuclear for all row-finite graphs.

nuclearity/exactness

- The graph C^* -algebra $C^*(E)$ is nuclear for all row-finite graphs.
- For any separated graph (E, C), the reduced C^* -algebra $C^*_{red}(E, C)$ is exact.

nuclearity/exactness

- The graph C^* -algebra $C^*(E)$ is nuclear for all row-finite graphs.
- For any separated graph (E, C), the reduced C^* -algebra $C^*_{red}(E, C)$ is exact.
- In general $C^*_{red}(E,C)$ is not nuclear, e.g.

$$C^*_{\text{red}}(E,C) = C^*_{\text{red}}(\mathbb{F}_2),$$

where (E, C) is the separated graph with one vertex v and two edges e_1, e_2 , and $C = \{\{e_1\}, \{e_2\}\}.$

Open questions

Open Problems

- When is the reduced graph C*-algebra of a finitely separated graph simple?
- When is the full or reduced graph C*-algebra of a finitely separated graph finite?
- 3 Assume that $C^*_{red}(E, C)$ is infinite. Is it then purely infinite? Does it at least have real rank zero?

Let (E,C) be a finitely separated graph. Let M(E,C) be the abelian monoid with generators $\{a_v \mid v \in E^0\}$ and relations given by $a_v = \sum_{e \in X} a_{r(e)}$ for all $v \in E^0$ and all $X \in C_v$. Then the natural map

$$M(E,C) \rightarrow \mathcal{V}(C^*(E,C))$$

is an isomorphism.

Let (E,C) be a finitely separated graph. Let M(E,C) be the abelian monoid with generators $\{a_v \mid v \in E^0\}$ and relations given by $a_v = \sum_{e \in X} a_{r(e)}$ for all $v \in E^0$ and all $X \in C_v$. Then the natural map

$$M(E,C) \rightarrow \mathcal{V}(C^*(E,C))$$

is an isomorphism.

• Let L(E, C) be the dense *-subalgebra of $C^*(E, C)$ generated by the canonical generators of $C^*(E, C)$. Then (Goodearl, A)

$$M(E,C) \cong \mathcal{V}(L(E,C)).$$

Let (E,C) be a finitely separated graph. Let M(E,C) be the abelian monoid with generators $\{a_v\mid v\in E^0\}$ and relations given by $a_v=\sum_{e\in X}a_{r(e)}$ for all $v\in E^0$ and all $X\in C_v$. Then the natural map

$$M(E,C) \rightarrow \mathcal{V}(C^*(E,C))$$

is an isomorphism.

• Let L(E, C) be the dense *-subalgebra of $C^*(E, C)$ generated by the canonical generators of $C^*(E, C)$. Then (Goodearl, A)

$$M(E,C) \cong \mathcal{V}(L(E,C)).$$

• The answer is positive in the non-separated case.

Let (E,C) be a finitely separated graph. Let M(E,C) be the abelian monoid with generators $\{a_v \mid v \in E^0\}$ and relations given by $a_v = \sum_{e \in X} a_{r(e)}$ for all $v \in E^0$ and all $X \in C_v$. Then the natural map

$$M(E,C) \rightarrow \mathcal{V}(C^*(E,C))$$

is an isomorphism.

• Let L(E, C) be the dense *-subalgebra of $C^*(E, C)$ generated by the canonical generators of $C^*(E, C)$. Then (Goodearl, A)

$$M(E,C) \cong \mathcal{V}(L(E,C)).$$

- The answer is positive in the non-separated case.
- The answer is positive if we look at *stable K*-theory:

$$Grot(M(E,C)) \cong K_0(C^*(E,C))$$

Let

$$\langle a_1,\ldots,a_n \mid \sum_{i=1}^n r_i a_i = \sum_{i=1}^n s_i a_i \rangle$$

be a presentation of the one-relator abelian monoid M, where a_1, \ldots, a_n are free generators, and $r_i + s_i > 0$ for all i. Let (E, C) be the finitely separated graph:

- 2 v is a source, and all the w_i are sinks.
- **3** For each $i \in \{1, ..., n\}$, there are exactly $r_i + s_i$ edges with source v and range w_i .
- $C = C_v = \{X, Y\}$, where X contains exactly s_i edges $v \to w_i$ for each i, and Y contains exactly r_i edges $v \to v_i$ for each i. Thus, $E^1 = X \sqcup Y$.

We call a separated graph constructed in this way a *one-relator* separated graph. As a particular example, we may consider the presentation $\langle a \mid ma = na \rangle$, with $1 \leq m \leq n$. This gives rise to the separated graph (E(m, n), C(m, n)).

We call a separated graph constructed in this way a *one-relator* separated graph. As a particular example, we may consider the presentation $\langle a \mid ma = na \rangle$, with $1 \leq m \leq n$. This gives rise to the separated graph (E(m, n), C(m, n)).

Remark

Observe that

$$M(E,C) \cong \langle a_1,\ldots,a_n \mid \sum_{i=1}^n r_i a_i = \sum_{i=1}^n s_i a_i \rangle.$$

Indeed, given any abelian conical monoid S we can construct a separated graph (E, C) such that $S \cong M(E, C)$.

Theorem

Let (E,C) be the one-relator separated graph associated to the presentation

$$\langle a_1,\ldots,a_n \mid \sum_{i=1}^n r_i a_i = \sum_{i=1}^n s_i a_i \rangle.$$

Set $M = \sum_{i=1}^{n} r_i$ and $N = \sum_{i=1}^{n} s_i$, and assume that $2 \le M \le N$. Then $C^*_{\text{red}}(E,C)$ either is purely infinite simple or has a faithful tracial state, and it is purely infinite simple if and only if M < N and there is $i_0 \in \{1,\ldots,n\}$ such that $s_{i_0} > 0$ and $r_{i_0} > 0$. Moreover, if $N + M \ge 5$ and $C^*_{\text{red}}(E,C)$ is finite, then it is simple with a unique tracial state.

Theorem

Let (E,C) be the one-relator separated graph associated to the presentation

$$\langle a_1,\ldots,a_n \mid \sum_{i=1}^n r_i a_i = \sum_{i=1}^n s_i a_i \rangle.$$

Set $M = \sum_{i=1}^n r_i$ and $N = \sum_{i=1}^n s_i$, and assume that $2 \le M \le N$. Then $C^*_{\text{red}}(E,C)$ either is purely infinite simple or has a faithful tracial state, and it is purely infinite simple if and only if M < N and there is $i_0 \in \{1,\ldots,n\}$ such that $s_{i_0} > 0$ and $r_{i_0} > 0$. Moreover, if $N + M \ge 5$ and $C^*_{\text{red}}(E,C)$ is finite, then it is simple with a unique tracial state.

Corollary

If 1 < m < n then $C^*_{red}(E(m, n), C(m, n))$ is purely infinite simple.

Lemma

Let F be the free abelian monoid on free generators a_1, a_2, \ldots, a_n . Let

$$x = \sum_{i=1}^{n} r_i a_i, \qquad y = \sum_{i=1}^{n} s_i a_i$$

be nonzero elements in F. Let M be the conical abelian monoid F/\sim where \sim is the congruence on F generated by (x,y). Then M contains infinite elements if and only if either x < y or y < x in the usual order of F.

Recall that a C*-algebra A is termed *residually finite dimensional* if it admits a separating family of finite-dimensional *-representations.

Using

S. Armstrong, K. Dykema, R. Exel, H. Li, *On embeddings of full amalgamated free product C*-algebras*, Proc. Amer. Math. Soc. **132** (2004), 2019–2030,

we get

Proposition

Let (E,C) be the separated graph associated to the presentation $\langle a_1,\ldots,a_n\mid \sum_{i=1}^n r_ia_i=\sum_{i=1}^n s_ia_i\rangle$. Consider the nonzero vectors $\mathbf{r}=(r_1,\ldots,r_n)$ and $\mathbf{s}=(s_1,\ldots,s_n)$ in \mathbb{Z}^n . Then the following conditions are equivalent:

- (i) $C^*(E, C)$ is residually finite dimensional.
- (ii) $C^*(E, C)$ admits a faithful tracial state.
- (iii) $C^*(E, C)$ is stably finite.
- (iv) $C^*(E,C)$ is finite.
- (v) $\mathbf{r} \not< \mathbf{s}$ and $\mathbf{s} \not< \mathbf{r}$ in the usual order of \mathbb{Z}^n .

Example

There exists separated graphs (E,C) such that M(E,C) is a stably finite monoid and $C^*(E,C)$ is a stably finite C^* -algebra, but $C^*_{\text{red}}(E,C)$ is purely infinite simple, and moreover the natural map $M(E,C) \to \mathcal{V}(C^*_{\text{red}}(E,C))$ is not injective.

Proof.

Take for instance the separated graph associated to the one-relator monoid $\langle a,b \mid 3a+2b=2a+4b \rangle$. By the Lemma, M(E,C) is a stably finite monoid and, by the Proposition, $C^*(E,C)$ is a stably finite C*-algebra. However, by the Theorem, we have that $C^*_{\text{red}}(E,C)$ is purely infinite simple. In particular we obtain that $\mathcal{V}(C^*_{\text{red}}(E,C))\setminus\{0\}=K_0(C^*_{\text{red}}(E,C))$ is cancellative. Thus $a\neq 2b$ in M(E,C) but a=2b in $\mathcal{V}(C^*_{\text{red}}(E,C))$. This shows the result.

Thank you very much for your attention!!!